ACOUSTIC EMISSION FROM SUBSONIC
TURBULENT JETS

L. M. Vyaz'menskaya UDC 532.517.4:534.23

A method is proposed for determining the noise intensity of subsonic jets. The results
are given from a calculation of the far-field intensity level of a jet for various Mach
numbers at the nozzle orifice. The results of the calculation are compared with the ex-
perimental data.

The foundations of the theory of turbulent jets have been laid in the work of Lighthill and further
elaborated by his followers. According to the theory set forth in [1, 2] the acoustic emission intensity of a
jet is proportional to UZ. However, the experimental data [3, 4, et al.] indicate that the jet noise intensity
for M, < 0.6 is proportional to UE; as My is increased the power exponent grows larger, approaching a
value of 7 to 7.5 for transonic jets. Several papers have been published to date (e.g., [5, 6]) in which in-
formation is presented on turbulence characteristics, permitting a numerical calculation of the intensity
level in the far field of a jet according to [1, 2]. The results of this calculation prove to be too low in com-
parison with the experimental data: by 20 to 25 dB for jets with M, in the interval from 0.3 to 0.6. The
discrepancy of the analytical and experimental results is probably attributable to the fact that fluctuation
terms of the type p'(dU;/ oxj) were not considered in [2]. Their incorporation into the form of solution
adopted in [1, 2] poses difficulties. We propose therefore, to seek an expression for the noise intensity in
the field of a jet by a somewhat different method,

We start with the wave equation derived by Lighthill*:
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the solution of (1) can be written in the form
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The integration in (3) is carried out over the volume occupied by the gas existing in turbulent motion,
i.e., over the jet volume. The quantity T =t — |ry — r|/q, is the time at which a signal emitted at the point
r arrives at the point ry at time t (Fig. 1). If we neglect the viscosity and sound absorption due to thermal
conduction in (2), we find that the expression for the excess pressure takes the form

*Here and elsewhere the double subscript in a single-term expression indicates summation on its values
from 1 to 3.
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Fig. 1. Physical model of the problem.

Fig. 2. Far-field jet noise intensity level versus emission angle and
Mach number. 1) M, =0 10; 2) 0.12; 3) 0.223; 4) 0.312; 5) 0.435; 6)
0.589; 7) 0.90; dashed curve) first approximation; dot-dash curve)
second approximation; solid curve) third approximation; the points de-
note the experimental data of [3]; L, dB.
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We take the time average, assuming that the average parameters in the jet are time-independent,
In this case we obtain for the average excess pressure at r;, which does not contribute to the noise,
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where the bar over ui'uJ! denotes averaging.

For the pressure fluctuation at point ry, we have

' = U, + U, —{—uu—uu} . (4)
P 1) 4n j‘jvj[ 0x,0%; P e [rg—rl
We consider the gas in the jet to be incompressible and neglect in @) the difference ufu! ~ W Then
4) reduces to the form 1] J
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We transform from Cartesian to cylindrical coordinates and in the sum contained in the integrand of
the latter equation reject higher-order small terms with regard for the fact that in the jet U > V and 8U

/8r > 8U/dr. Then
aw
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To calculate the jet noise intensity we use the fundamental principle of Lighthill's theory: if the noise
sources in the jet are sufficiently correlated, the pressure amplitude at point r, is a linear combination of
the amplitudes generated by the sources, and for uncorrelated sources the acoustic energy is additive.

In accordance with this principle we partition the jet into domains in which the velocity fluctuations are

correlated and we determine the intensity generated at ry by a single such domain Q. To do this we repre-
sent 7 as follows:
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where 6t(r) is the propagation time of a perturbation from point r of the domain © to the surface S of a
sphere of radius |ry —r,| with center at ry and tangent to Q (Fig. 1). We call 6t(r) the proper time delay by
analogy with the term used in electromagnetic field theory [7]. The quantity |ry ~r,|/a, represents the
propagation time of a perturbation from the surface S to the point ry,.

We expand the function 6v'/8x, which depends on the proper delay, ina Taylor series in the neigh-
borhood of the time t, =t — [rg — x| /a,:
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The x derivatives can be expressed in terms of the t derivatives on the basis of the Taylor hypothesis
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It now remains for us to consider the relationship between the t and the 7 derivatives. Proceeding from the
definition of 7, we have
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We therefore arrive at the relation
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which describes the Doppler effect, i.e., relates the natural frequency of the sound emitted by a2 moving
source to the frequency perceived in a fixed coordinate system [7].

Taking (6)~(8) into account, we find for the pressure generated by the domain Q
P )= | {{BOY [AM)], W, (9)
Q
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Note that in (9) A(r) is evaluated for all points of @ at one given time t,, as opposed to (5), in which
the integrand is evaluated at different times for different points of the domain of integration. The choice of
the time t, does not affect the value of the noise intensity, so thatin (9) we can drop the argument t, on the
right and t on the left.

We now consider the fluctuation pressure in the zeroth approximation, which is determined by the
first term in (10). In this approximation the relative delay of perturbations emitted by different elements
of @ is ignored. Evaluating the integrand in this case by means of the momentum conservation equations

for an incompressible gas, we obtain
rr aw
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This integral is equal to zero, because r; lies outside the domain @ [9]. Therefore, the first term
of the series (10) does not contribute to the noise pressure.

We further the determination of the jet noise intensity in accordance with [1]. We write Eq. (9) in the
approximate form

p' (rg) = B (r) A(r.) .

Now the intensity of the noise generated by Q is

Iy (ry) = B (r,) A(r,) A(r,+ or) 22

00

The intensity emitted by unit volume of the jet is written in the form

B (r) A% (r,) @y, (11)

19 (ro) =
0oo
where Q; is the characteristic volume determined by the integral turbulence scales. The intensity of the
noise generated at the point ry by the entire jet is deduced by integration of (11) over the volume occupied
by the turbulent jet:
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where the expression for A2 with regard for the relations
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assumes the form
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It is clear that the characteristic time delay 6t is proportional to the characteristic dimension of the domain
2. We assume in the calculations that 6t = 0.37Lx/ ay.

The calculations were carried out on a digital computer according to Eqs. (12) and (13) for the jet
far field, where |r, —r| was replaced by |r,l. Therequisite parameters were taken from [5, 6, 10]; the
necessary turbulence characteristics were specified as approximations of the empirical relations given
in the same papers.

The results of the noise intensity level (1) calculations are shown in Fig. 2. As the figure indicates,
for jets with M, < 0.5 the calculation of the intensity in the first approximation, i.e., with only the first
term retained in (13), yields good agreement with the experimental data, and the subsequent approxima-
tions converge rapidly. The noise intensity for the given values of My is proportional to U§,. For transonic
jets the third or fourth approximation suffices, but for better concurrence with the experimental, ob-
viously, the compressibility of the gas in the jet should be taken into account.

NOTATION
t is the time;
T is the radius vector;
Xi, Xj are the projections of the latter on the Cartesian coordinate axes;
Ty is the radius vector at which the noise intensity is sought;
X, Ty, ¢ are the cylindrical coordinates;
uj, Ui, ui' are the instantaneous, average, and fluctuation velocities in projection on the Cartesian
coordinate axes;
u, v, w are the axial, radial, and tangential components of the instantaneous velocity;
U,V are the longitudinal and radial average velocities;
v! is the radial fluctuation velocity component;
a, is the velocity of sound;
P is the density;
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are the density and pressure in the unperturbed medium;

are the instantaneous, average, and fluctuation pressures;

are the average velocity and Mach number at the nozzle orifice;

are the velocity and Mach number for vortex convection;

is the characteristic volume of velocity fluctuation correlation domain;
is the radius vector of the center of the domain Q;

are the characteristic natural frequency and proper time delay for Q;
are the longitudinal and radial integral turbulence scales;

is the unit vector in the direction of emission;
is the angle between n and the x axis;

is the noise intensity;

is the intensity level;

is the unit tensor;

is the Laplace operator.
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